Differential Evolution with Improved Mutation Strategy

نویسندگان

  • Shuzhen Wan
  • Shengwu Xiong
  • Jialiang Kou
  • Yi Liu
چکیده

Differential evolution is a powerful evolution algorithm for optimization of real valued and multimodal functions. To accelerate its convergence rate and enhance its performance, this paper introduces a top-p-best trigonometric mutation strategy and a self-adaptation method for controlling the crossover rate ( CR ). The performance of the proposed algorithm is investigated on a comprehensive set of 13 benchmark functions. Numerical results and statistical analysis show that the proposed algorithm boosts the convergence rate yet maintaining the robustness of the DE algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor

In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...

متن کامل

A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle

Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...

متن کامل

Improved Strategies of Multi-objective Differential Evolution (MODE) for Multi-objective Optimization

Multi-objective optimization using an evolutionary computation technique is used extensively for solving conflicting multi-objective optimization problems. In this work, an improved strategy of multi-objective differential evolution (MODE) where the mutation strategy is changed to a trigonometric mutation approach is proposed. The proposed strategy along with other well known strategies of MODE...

متن کامل

An Improved Differential Evolution Algorithm for Solving High Dimensional Optimization Problem

In order to improve the weak situation of the global search ability, the stability and time consuming of optimization of differential evolution(DE) algorithm in solving high dimensional optimization problem, an improved differential evolution algorithm with multipopulation and multi-strategy(MPMSIDE) is proposed to solve high dimensional optimization problem. Firstly, the different DE mutation ...

متن کامل

Differential Evolution Based on Improved Learning Strategy

From a learning perspective, the mutation scheme in differential evolution (DE) can be regarded as a learning strategy. When mutating, three random individuals are selected and placed in a random order. This strategy, however, probably suffers some drawbacks which can slow down the convergence rate. To improve the efficiency of classic DE, this paper proposes a differential evolution based on i...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011